Center for Solid State Electronics Research
Chemical Safety and Hazardous Waste Management

Rules and Procedures 2010-2011

Contents

CSSER Directory and Facilities Information 3

Rules and Procedures:

Section I. CSSER Collective Commitment to Safety 4
 A. Basic Safety 4
 B. Acknowledgements 5
 C. Penalties 6
 D. Safety Links 7

Section II. Cleanroom Protocols 8
 A. General Guidelines & Rules 8
 B. Clothing Guidelines 10
 C. MSDS Information 11
 D. CSSER Provided Chemicals 11
 E. Preliminary Hazard Assessment 12

Section III. Incidents and Accidents 13

Section IV. Classes of Chemicals and Special Hazards 14
 A. Hazardous Materials Defined 14
 B. Ways Chemicals Enter the Body 15
 C. Personal Protective Equipment (PPE) 15
 D. Chemical and General Safety Chart 17
 E. Piranha Handling and Disposal Procedures 23
 F. Treatment of HF Exposure 24
 G. Liquid Nitrogen Hazards and Handling 27

Section V. Chemical Sign-Out Procedures 29

Section VI. Hazardous Waste Handling & Disposal 32

Section VII. Chemical Spill Procedures 37

Section VIII: Safety FAQs 39

Appendices:

Appendix A CSSER Glossary 41
Appendix B Common and IUPAC Chemical Names 42
Appendix C Cleanroom Floor Plan 44
Appendix D Cleanroom Orientation 45
Appendix E Student Cleanroom Cleaning Duties 46
Appendix F Blank PHA Form 47
Appendix G Photographs of Support areas And Safety Gear 49
Appendix H NFPA Hazard Diamond 53
CSSER Directory 2010 – 2011

<table>
<thead>
<tr>
<th>Staff</th>
<th>Phone</th>
<th>Office</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trevor Thornton, Director</td>
<td>965-3808</td>
<td>ERC 115A</td>
<td>trevor.thornton@asu.edu</td>
</tr>
<tr>
<td>Stefan Myhajlenko, Associate</td>
<td>965-2697</td>
<td>ERC 113</td>
<td>myhajlenko@asu.edu</td>
</tr>
<tr>
<td>Tim Eschrich, Manager</td>
<td>727-7383</td>
<td>ERC 151</td>
<td>tim.eschrich@asu.edu</td>
</tr>
<tr>
<td>Paul Boland, Process</td>
<td>727-7142</td>
<td>ERC 144</td>
<td>paul.boland@asu.edu</td>
</tr>
<tr>
<td>Carrie Sinclair, Process</td>
<td>965-9143</td>
<td>ERC 144</td>
<td>Carrie.sinclair@asu.edu</td>
</tr>
<tr>
<td>Art Handugan, Manager</td>
<td>727-7143</td>
<td>ERC 151</td>
<td>handugan@asu.edu</td>
</tr>
<tr>
<td>Todd Eller, Equipment</td>
<td>965-2675</td>
<td>ERC 144</td>
<td>jerry.eller@asu.edu</td>
</tr>
<tr>
<td>Jon Martin, Equipment</td>
<td>965-3410</td>
<td>ERC 144</td>
<td>jon.martin.1@asu.edu</td>
</tr>
<tr>
<td>Wayne Paulson, Research</td>
<td>727-8629</td>
<td>ERC 152</td>
<td>wayne.paulson@asu.edu</td>
</tr>
<tr>
<td>Geri Thiele, Business</td>
<td>965-5256</td>
<td>ERC 120</td>
<td>geri.thiele@asu.edu</td>
</tr>
<tr>
<td>Gio Esteves, Lab Aide II</td>
<td></td>
<td>ERC 290</td>
<td></td>
</tr>
<tr>
<td>John Crozier, Health & Safety</td>
<td>965-8498</td>
<td>GWC 182</td>
<td>jcrozier@asu.edu</td>
</tr>
<tr>
<td>John Crozier (cell phone)</td>
<td>329-8880</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Facilities

<table>
<thead>
<tr>
<th>Facilities</th>
<th>Phone</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friesen Research Group</td>
<td></td>
<td>ERC 112</td>
</tr>
<tr>
<td>Bio-MEMS Lab</td>
<td></td>
<td>ERC 122</td>
</tr>
<tr>
<td>MEMS Chemical Processing</td>
<td></td>
<td>ERC 127</td>
</tr>
<tr>
<td>Sample Preparation 2</td>
<td></td>
<td>ERC 129</td>
</tr>
<tr>
<td>FESEM</td>
<td></td>
<td>ERC 131</td>
</tr>
<tr>
<td>EBL</td>
<td></td>
<td>ERC 133</td>
</tr>
<tr>
<td>Sample Preparation 1</td>
<td></td>
<td>ERC 138</td>
</tr>
<tr>
<td>Nanoionics Prototyping Facility</td>
<td></td>
<td>ERC 139</td>
</tr>
<tr>
<td>Cleanroom</td>
<td>965-7876</td>
<td>ERC 146</td>
</tr>
<tr>
<td>Molecular Beam Epitaxy</td>
<td></td>
<td>ERC 164</td>
</tr>
<tr>
<td>Hall Measurement System</td>
<td></td>
<td>ERC 234</td>
</tr>
<tr>
<td>Probe Stations</td>
<td></td>
<td>ERC 240</td>
</tr>
</tbody>
</table>
Section I. Collective Commitment to Safety

We must all be committed to maintaining a safe working environment: “No research is so important that it justifies endangering human health” (to quote from a College [now renamed the Ira A. Fulton School of Engineering] safety memo dated June 16, 1986). To this end, we have implemented an advisory procedure similar to industry’s “Safety Management By Walking Around” (SMBWA). All Center constituents are encouraged to participate in the SMBWA program. In short, we must all be vigilant. If you see something that does not look right, could be a hazard, etc. please report such concerns immediately to Center staff. The Center has made a serious commitment to become a role model in safety for the Fulton School of Engineering and the University. The Fulton School has a safety officer (John Crozier, 480-965-8498) to support and assist us with general environmental, health, and safety matters. Please feel free to contact CSSER staff or John Crozier if you have any safety-related questions.

The Bottom Line on Safety

- Ignorance of the rules, lack of common sense, language difficulties, carelessness, and haste are not adequate excuses for unsafe behavior.
- In spite of rules and staff supervision, primary responsibility for safety rests with the individual user.
- If you do not have time to do things correctly and safely, with adequate time for thought, please stay home.

A. Basic Safety Orientation

The Center requires that prior to starting work all users of the Cleanroom and sample preparation laboratories attend:

1. The ASU Environmental Health & Safety (EHS) presentation on Laboratory Chemical Safety. Attendance at the ASU EHS safety class is a University policy requirement.

2. Fire Safety training, also presented by ASU EHS. This annual training is an ASU requirement.

3. Hazardous Waste Management training presented by ASU EH&S. This annual training is an ASU requirement. After the initial face-to-face session, this course may be completed online through ASU Blackboard annually.

These classes are offered through ASU EHS, and you may sign up by contacting Employee Development at 965-4751, or by self-registration online at the Employee Development website http://www.asu.edu/hr/training or at the EHS website http://cfo.asu.edu/cfo-training-development.

4. The Center’s internal “Cleanroom Safety Course” is mandatory and is typically offered monthly. The Center’s safety orientation includes a written test in which a passing grade (80%) is required to gain access to the cleanroom and laboratories with chemical usage. Each person must obtain a copy of the current “Rules & Procedures Handbook” by downloading it from the CSSER website. Bring this document with you when attending the class. As of January 1, 2005, there is a $300 fee to attend this class. Please go to ERC 120 to sign the book and be added to the Cleanroom Distribution list.
5. Attendance at the Annual Safety Refresher is Mandatory. If missed without valid reason, you will be required to re-take the next available Cleanroom Safety and Orientation Class in their entirety, and pay the $300 fee before being readmitted to the Cleanroom.

Individuals are further required to sign an agreement after training and annually thereafter, that they understand the Center’s safety guidelines and the consequences for non-compliance (i.e. penalties). These classes serve only as an introduction to safety. Students, faculty and staff are encouraged to continue their education at every opportunity.

Examples:

- Attend EHS Refresher Training
- Review MSDS of the chemicals you use
- Check vendor websites for updates
- Join SESHA, the Semiconductor Environmental Safety & Health Association.

B. Acknowledgement

The Center acknowledges Air Products and Chemicals, Inc., for their generous assistance and provision of the “Cryogenics” liquid safety information.
C. Penalties

Article Three (Policies and Operations), section 1 of CSSER’s Bylaws articulates the following; “Maintenance of a safe, collegial and pleasant working environment for faculty, staff and students is the primary responsibility of the Center Director and the staff.” It is the intent of this document to encourage an attitude commensurate with this goal. However, the Center must have an effective method of recourse to discourage unsafe actions and penalize repeat offenders. Industry does not tolerate safety and environmental infractions: you are simply fired.

The Center’s Executive Council and membership have approved a 2-Stikes Policy with offenders in regards to matters of safety, hazardous chemical handling, waste, and disposal. Acts of criminal behavior will result in expulsion and/or termination. Criminal behavior is deliberate and willful disregard for safety procedures that results in a hazard to personnel, equipment, or facilities. Criminal acts will result in legal as well as disciplinary action.

We describe our day-to-day (actual current practice) uniform application of rules and procedures, including escalation toward a strike recommendation for major safety infraction. A strike can also result from repeated disregard to prior instructional safety warnings. One of our goals is to better educate you in matters of safety so that you will have a pleasant experience in the facility.

1. A verbal warning will be documented in the CSSER Safety Metrics folder by name, nature of infraction, and when it took place by the staff member making the observation. For the most part, these warnings are simple reminders to follow rules and procedures. No remedial action is taken since the purpose is to reinforce instructional value.

2. A second verbal warning for the same violation will result in a written warning.

3. Written warnings constitute more serious disregard of rules and procedures and will be forwarded to the individual, their faculty and CSSER staff. ACTION is EXPECTED from the individual to remedy the infraction. For example, leaving waste chemicals in the pass-through for an extended period of time is not allowed: The corrective action would be to remove them to the waste cabinets as soon as possible.

4. A repeated written warning for the same infraction will result in an intermediate (pre-strike) penalty. The written warning will be forwarded to the individual, their faculty and CSSER staff. The penalty will fit the nature of the infraction. At this juncture, the penalty should be viewed as CSSER community service. For example, disregard of tool safety protocols will result in mandatory attendance at the monthly Cleanroom Open Forum for improved acquisition of information.

5. If a CSSER staff member believes there has been a serious violation of the rules and procedure on an individual’s part, the staff is authorized to ask the individual to leave the facility immediately and shall report the incident to the CSSER Safety Officer. Please be respectful and courteous should you be asked to leave the facility: Please do not be contentious. We will discuss the matter calmly afterwards. The CSSER Safety Officer shall notify the Center Director, Associate Director, Fulton School Safety Officer and the individual’s faculty advisor in writing for strike recommendation.

 a. **First Strike:** Access to all Center equipment and labs shall be revoked until the individual and his/her advisor meets with the Center Director (or designee) to discuss the circumstance of the violation. ASU EHS may also be invited for assistance. The individual must write a personal improvement plan to be approved by CSSER.

 b. **Second Strike:** Access to all Center equipment and labs shall be permanently revoked following recommendation by the Executive Council (as serious threat to maintaining a safe working environment within the Center). Further penalties may be imposed to fit the severity of the violation. This may result in financial penalties, termination of academic program with CSSER/ASU and/or employment termination procedures with ASU.
D. Safety Links

This safety document has been prepared by Center members (faculty, staff, and students) and representatives from the ASU Environmental Health & Safety (EHS) Department. The document outlines the current chemical handling procedures and policies regarding safety within the Center. This original document was enacted on 6/1/1998. Revisions and updates of this document will occur on a periodic basis.

If there is a conflict between CSSER’s guidelines and those of the University, the University rules shall prevail.

Please also visit the ASU web sites below for more detailed information on hazardous waste management policies:

http://www.fulton.asu.edu/fulton/csser/safety.php

The University Environmental Health & Safety (EHS) homepage can be found at:

http://cfo.asu.edu/ehs

Please also visit the recently updated Fulton School of Engineering safety web-site below for Preliminary Hazard Assessment and Incident Report forms, links to Material Safety Data Sheets (MSDSs), responsible party information and other safety-related topics.

http://engineering.asu.edu/safety

The Fulton School of Engineering now subscribes to “MSDS.com”.

SunRISE Chemical Manager web-access link provides open access to MSDS search using msds.com) Log into SunRISE: http://cfo.asu.edu/purchasing-sunrise

The link to the MSDS search is in a box on the left side of the home page.
To login: User Name will be “sunrisemsds”, the Password will be “sunrise”.

Or simply use the following:
http://www.msds.com
Section II. Cleanroom Protocols

Note: Rules are shown in Bold Procedures and FYI’s are italicized

It is important that a uniform safety code exists throughout CSSER. The Cleanroom protocols outlined below apply to all of CSSER laboratories with chemical usage. These shared and dedicated laboratories include: ERC112, ERC-122, ERC127, ERC129, ERC138, ERC139, ERC164 and ERC 208. Hazardous waste (by regulatory code) must be contained in the laboratory in which it is generated. Disposal of waste is handled by directly contacting ASU EHS Hazardous Waste for pick-up (965-3899). (See section III)

Users must apply for ISAAC access to ERC146A (chemical waste cabinets) and ERC146C (hallway door) in order to properly participate in CSSER’s hazardous waste management plan.

A. General Cleanroom Guidelines & Rules

1. Do not work in the Cleanroom if you feel particularly tired or unwell (e.g., heavy cold or allergies) or if you have taken even a small amount of medication or alcohol.

2. All personnel must wear safety glasses or goggles while they are in the Cleanroom. Contact lenses are not allowed in the Cleanroom.

3. Always use the ‘CSSER Buddy System’ when working in the Cleanroom after normal working hours, which are: Monday – Friday, 8AM – 5PM. Do not work alone outside of these hours.

 A. “Buddy-1” applies to the Cleanroom and Liquid Nitrogen fills: Compulsory buddy system applies for outside of normal working hours. Buddies must be valid users of the cleanroom.

 B. “Buddy-2” applies to all Center laboratories with chemicals: At this time, Buddy-2 will apply to ERC112, ERC-122, ERC127, ERC129, ERC138, ERC139, ERC164 and ERC 208. The Buddy-2 ‘collegial’ advisory is as follows: Outside of normal working hours we strongly recommend that for your own safeguard you inform an associate or colleague: of your whereabouts; what you plan to do; how long it will take you; etc. The Buddy-2 support person can be located anywhere within ERC. The key point is that if the support person doesn’t see you or hear from you in a while e.g. you are long overdue, the expectation is that in the spirit of mutual concern for each of our well-being, the support person would follow up to see if anything is amiss. We also suggest periodic lab check-ups during the course of any extended twilight research activity. We have clearly identified those Center laboratories deemed “Buddy-2” with signs on the doors to aid your recognition of the Buddy-2 system.

4. Personal cleanliness is essential for any cleanroom environment. Makeup, of any type, is forbidden in the cleanroom.

5. No dangling jewelry is to be worn in the cleanroom.

6. For SAFETY reasons, shorts or bare midriffs are not allowed in the cleanroom.

7. Shoes shall cover the entire foot with no open toes, sides, or heels and must be worn when handling or disposing of chemicals. No sandals, flip-flops, or high heels over 1.5”.

8. No food or drink of any kind is allowed in the dressing area or the cleanroom. Food or drink includes such items as: candy, gum, cough drops, coffee, water, etc.

9. Smoking is allowed only in designated areas outside the building per the Smoke-Free Arizona Act – Arizona Revised Statutes, Title 36 § 36-601.01.
10. Safety apparel must be worn when handling or disposing of chemicals. The minimum appropriate apparel for each class of chemical must be worn. This includes safety glasses or goggles, face shield, chemical gown, and chemical gloves.

11. All personal items such as backpacks, makeup, combs, brushes, handkerchiefs, etc. are not to be brought into the clean room or the dressing area.

12. Only clean room paper and lab wipes will be brought into and used in the clean room. Notebooks, specifications, memos, schematics, magazines, or any form of correspondence are not to enter the clean room area unless they are laminated, in plastic covers, or on authorized clean room paper.

13. For SAFETY reasons, do not sit on worktables or lean on benches or equipment.

14. No spray cans or powdered materials are allowed in the clean room or dressing area.

15. No cardboard boxes or packaged materials are to be brought into the clean room.

16. Any debris on the floor or at a workstation is to be picked up and disposed of. Assume the responsibility for a clean, neat and safe work environment.

17. Due to the potential hazards of residual gases and other chemicals in tools, if a tool malfunctions while you are using it you must complete the online service request form, make an entry in the tool's logbook, and post the “DOWN” sign. Also, please enter a Service request for tool repair, filling out all the information on line. The service Request link is https://fultonapps.asu.edu/csser/.

18. Each user will be responsible for correct disposal of all waste chemicals as stated in Section III. Storage of waste chemicals in the Cleanroom is NOT permitted. All waste chemical bottles MUST be correctly labeled.

19. Individuals are strongly encouraged to advise/caution/educate other facility users who are not complying with safety guidelines and protocols. Please report the individual/incident to CSSER staff if the person continues to act in an unsafe manner.

20. Chemicals (in glassware or original bottles) are not to be stored in wet benches. Squirt bottles of approved common solvents are permitted in solvent benches. Users who need to run long or unattended wet chemistry experiments are required to obtain prior approval in writing from a CSSER Staff member. Please send an email to all CSSER Staff with your request. These experiments must be clearly marked and labeled, i.e. state the nature of chemicals, the user name, a contact phone number, and date and time experiment will be completed. CSSER staff will dispose of unapproved experiments. All individual user (custom) chemical bottles must have the same appropriate labeling. All unmarked beakers, samples, bottles, etc. will be removed at the end of the normal workday by CSSER staff. Violators will lose Cleanroom privileges per the 2-strikes policy.

21. Acids and other hazardous chemicals must be transported safely. To transport hazardous chemicals through corridors or across campus (e.g., from Lab Stores or another lab somewhere), the use of a bottle carrier or “acid bucket” is mandatory.

22. Users must clean & dry wet benches after their work is completed.

If you are unsure of anything at any time involving the Cleanroom, handling chemicals, disposing of waste, etc., please contact CSSER staff for assistance.
B. Cleanroom Clothing Guidelines

1. Everyone entering the clean room will be required to wear an appropriate clean room garment. The apparel will include: face mask, hair net, hood, full body suit (bunny suit), shoe coverings (booties), safety glasses or goggles, and disposable gloves.

2. Clean room attire will be put on in the following order: face mask, hair net, hood, bunny suit, booties, gloves. The attire is to be removed in reverse order: booties, bunny suit, hood, Hair net and face mask. The clean room garment is to completely zipped up to the neck and the snap used to secure the collar area. The glove cuffs are to be placed over the garment sleeve cuffs and secured around the wrist. No street clothing is to be visible outside the clean room garment.

3. Booties must cover the shoes and have the legs of the bunny suit tucked inside the booties.

4. All hair must be tucked inside the hair net and the flap of the hood must be completely inside the bunny suit.

5. Clean room garments are to remain completely zipped up while in the clean room.

6. Clean room attire is not to be worn in a non-clean room area except in an emergency. The garments are to be stored in the dressing area on a hanger and hung on the rack.

7. Clean room garments are to be changed once a week. If the garment becomes damaged or badly soiled, then it should be changed immediately.

8. Shoes should be clean and free of dried mud, dirt, etc. before entering the dressing area.

9. Do not touch your face, nose, mouth, or bare skin area while wearing the gloves in the clean room. This would introduce contamination to the product and/or the equipment.
C. MSDS Information

1. All users must read the MSDS thoroughly and understand the properties and hazards associated with using or mixing chemicals.

2. MSDS’s are available for all chemicals used within the CSSER cleanroom and its labs. They are located in the following areas:

 1. **Master copy:** Located in ERC144
 2. **C/R copy:** Located in ERC146A Chemical waste storage area.
 3. **Labs:** Only the chemicals which are stored and used regularly in these labs have an MSDS located within.

D. CSSER Provided Chemicals

1. CSSER will provide the following general use chemicals. Please refer to Appendix B for proper (IUPAC) names of these materials.

 - Acetone
 - Isopropanol
 - Methanol
 - Hexamethyldisilazane (HMDS)
 - AZ 3312 Resist
 - AZ 4330 Resist
 - AZ 300 MIF Developer
 - AZ 400K Developer
 - AZ 400T Stripper
 - Hydrogen Peroxide
 - Ammonium Hydroxide
 - Acetic Acid
 - Nitric Acid
 - Hydrochloric Acid
 - Phosphoric Acid
 - 20:1 Buffered Oxide Etch (BOE)
 - Hydrofluoric Acid
 - Sulfuric Acid
 - Chrome Etch

2. CSSER will provide the following chemicals for Electron Beam Lithography (EBL) use only:

 - Anisole
 - Ethanol
 - 2-Ethoxyethanol
 - MethylEthylKetone (MEK)
 - Methyl Isobutyl Ketone (MIBK)
 - Polymethylmethacrylate (PMMA)

3. The following chemicals are not provided by CSSER but are approved for general use, i.e., no PHA is required to use them as long as the user has taken the CSSER Safety Training:

 - AZ 4620 Resist
 - SU-8 Series Resist
 - SU-8 Developer
 - AZ 5214-E IR Resist
 - AZ 1505 Resist
 - Microstrip 2001 Stripper

4. Gases

 a. A PHA must be submitted for all gas cylinders to be used in a lab, regardless of the cylinder size. An MSDS for each gas must be submitted with the PHA.
 b. The PHA must be submitted and approval granted prior to the gas being purchased.
 c. All flammable, corrosive, or toxic gases must be contained in an approved exhausted/ventilated gas cabinet with all appropriate safety interlocks and sensors installed and operating.
 d. Failure to comply with these guidelines will result in loss of access to the lab and/or all CSSER facilities.

 Note: Additional safety or regulatory requirements may need to be met before approval.
E. Preliminary Hazard Assessment

The purpose of the Preliminary Hazard Assessment (PHA):

1. It provides lab-specific accountability for the chemicals used in CSSER.
2. The exercise of writing this document is to ensure that the chemical user understands the hazards and has thought through the process he/she is planning. This is also a right-to-know step to ensure that all users of a chemical have reviewed the chemical MSDS and understand its properties and hazards.

A. An original PHA is required:

1. For chemicals that are new to CSSER (refer to Section II-8, 9 & 10).
2. For chemical mixes and processes that are new to CSSER. (If in doubt, contact CSSER Staff)

B. An amended PHA is necessary:

1. For chemicals and materials that someone else brought into CSSER, and you now wish to use (at CSSER discretion. You may be required to submit a new PHA)
2. To take ownership of chemicals from someone who is graduating or leaving
3. To join a project already in progress by your group as a co-experimenter
4. To add new or different chemicals to a PHA you have already completed
5. To change process details of a PHA you have already completed

Please attach another PHA to a copy of the original PHA form sheet describing the changes (people added, chemicals added, process changes, etc.), supply any needed MSDS, and make sure that all experimenters sign it before submittal of the form. There is no need to copy all of the original information onto a new sheet, but must be able to explain the process, chemicals, and hazards.

Users who require other chemicals are required to write a proposal called a Preliminary Hazard Assessment (or “PHA”) for the use and disposal of the chemicals. The Preliminary Hazard Assessment form is available at http://engineering.asu.edu/safety.

Prior to ordering, the user is to include a step-by-step plan for the chemicals, including use quantity, frequency and location of use, and chemical disposal, per the following steps:

1. The user is to obtain the Material Safety Data Sheets (MSDS) sheets for the planned/proposed chemicals prior to ordering.

2. The user is to contact CSSER Safety Personnel to discuss their plan for use and disposal of new chemicals. The user will be instructed to write their proposal and submit a PHA for approval to CSSER Safety Personnel. The PHA will be discussed among CSSER Safety Personnel as well as Fulton School Safety Officer, John Crozier. Once the PHA is discussed, the user will be notified of any changes, safety concerns, requirements, etc. to be made. If there are no issues or concerns, the user will be notified of approval by CSSER Safety Personnel.

 a. CSSER Safety Committee will meet weekly to discuss any new or outstanding PHA’s. CSSER Safety Committee consists of: Stefan Myhajlenko, Tim Eschrich, Carrie Sinclair and Fulton Safety Officer, John Crozier.

3. Upon receiving approval to use the chemicals, the user shall provide 3 copies of the MSDS to CSSER Safety Personnel. It shall be the user responsibility to place the MSDS in the lab MSDS binder.
Section III. Incidents and Accidents

1. Incidents and Accidents: An “incident” is any event, large or small, that either causes or has the potential to cause personal injury or damage or loss of property or equipment. All incidents MUST be reported per ASU EHS-115 policy. An Incident Report form may be found at http://engineering.asu.edu/safety. Follow the instructions on this simple report form and e-mail it to Jcrozier@asu.edu.

2. If you or your experiments are involved in an incident as defined above, you must notify CSSER staff and complete an incident report. Failure to complete an incident report will result in the loss of lab and/or cleanroom privileges per the 2-strikes policy.

3. If you are injured at work: No matter how minor the job related injury/illness or accident may seem, it must always be reported within 48 hours of the occurrence by calling (602) 542-WORK or 1-800-837-8583. Notify your supervisor: they must fill out an “Employer’s Report of Injury” form (must be completed and returned to the Customer Service Center no later than 9 days after the occurrence).

4. Failure to report within those time frames can result in severe monetary fines, payable by your department. Prompt reporting will accelerate the processing of the claim and will avoid unnecessary delays or denial of possible benefits, and/or penalties.

5. You may report directly to ASU Student Health http://www.asu.edu/studentaffairs/health/ or Tempe St. Luke’s emergency (1500 S. Mill Ave, Tempe) for initial treatment unless the injury/illness is serious or Student Health is not open. If the injury/illness is serious or Student Health is closed, you should call your primary care physician or report to the nearest emergency room. Incident reports and the Employer’s Report of Injury must still be filed.

CLEANROOM EMERGENCY PHONE

The Telephone dials directly to DPS and is to be used ONLY in case of an EMERGENCY within the CSSER Cleanroom.

Please provide the following Response Information:

Address: ASU/Main Campus
551 East Tyler Mall
Tempe, AZ 85287-6206

Building: #63 Engineering Research Center

Room: 146A (CSSER Cleanroom)

Phone: 480 965 7703 (emergency phone)
480 965 7876 (cleanroom phone)
Section IV. Classes of Chemicals and Special Hazards

Chemicals and Safety: General Cleanroom (Fab) Guidelines

Introduction

We live in a chemical environment. Chemicals are all around us – in our homes, at work, in the air, and in our food. When working with chemicals and gases, the first reaction one has is, "DANGER", but if handled properly and with a little thought, they can be quite safe. Remember, all substances are poisons; only the dose separates a poison from a remedy.

In the Cleanroom or Fab (Fabrication) area, various types of safety equipment have been installed to provide you with the most practical protection possible. For your own sake, always use the appropriate PPE; it is provided with your well being in mind. If your PPE saves your eyes, or prevents a serious injury to you just once, it has been worth it. Good safety habits aren't just for you, but also for all other users. Be concerned for their safety as well as your own. If you see someone performing an UNSAFE act or not following safety regulations, make him/her aware of it. If someone does not take enough concern for him/herself, tell a CSSER staff member. It is for your good as well as that of all other users.

A. Hazardous Materials Defined

Before we begin our discussion, we need to have an understanding of some basic terms and definitions.

1. **Hazard**: Source of Danger
 a. **Toxicity**: Capacity of a substance to harm (poisonous).
 i. **Local Toxicity**: Affects the part of the body it enters
 ii. **Systemic Toxicity**: Affects body organs regardless of the point of contact

2. **Acute Exposure**: Sudden, short.

3. **Chronic Exposure**: Long term
 a. The relationship between toxicity, exposure, and individual susceptibility can be expressed as Dose/Response.

4. **Threshold Limit Value or TLV**: The amount of a substance to which the one can safely be exposed to over a specified period of time (usually eight hours a day, forty hours per week).

5. **Material Safety Data Sheet (MSDS)** for each material/chemical will tell you everything about the material being used, including flammability, reactivity, toxicity, safety and treatment.

6. **The ASU Environmental Health & Safety (EHS) Lab Chemical Safety course must be completed as a requirement of the cleanroom orientation.**
B. Ways Chemicals Enter the Body

In order for us to have a good understanding of safe chemical handling, we need to understand the way chemicals enter the body and some safe guards to use to protect ourselves:

1. **Inhalation** - nose, mouth, most common way chemicals enter the body.
 - Prevention: Exhaust hood, respirator.

2. **Absorption** through the skin, cut, or wound.
 - Prevention: aprons, chemical gowns, rubber gloves, eye protection, approved footwear.

3. **Ingestion** - swallowing, also can be picked up from hands when eating, smoking, etc
 - Prevention: wash hands before eating or smoking.

4. **Eyes** - splashes, rubbing eyes with hands, etc.
 - Prevention: safety glasses, face shield, ventilation, exhaust.

5. **Injection**
 - Prevention: handle bottles carefully; be careful with sharp objects.

C. Personal Protective Equipment (PPE)

CSSER provides the students who work in the Fab area protective clothing and equipment. It’s important that you know how to use this equipment and how to care for it. Listed below is some of the equipment and rules to follow when using it:

- Chemical resistant gloves
- Face Shields/Safety Glasses and Goggles
- Chemical gown

1. Any person working with acids and/or solvents must wear safety gear.

2. Ensure proper fit; never alter or change protective clothing in any way and always wear it in the prescribed manner.

3. Inspect the gear **before** each use and test as necessary to ensure proper protection; remove from service if faulty.

 Chemical Gloves

a. Check chemical gloves periodically.

b. Gloves must be washed off with water and dried frequently, especially before removing them. The Meritec glove-washer is adjacent to the spin dryer.

c. Never touch gloves with bare hands, always remove them at the same time and handle by the cuff only.

d. Always wear chemical gloves outside gown sleeves.

 Face shields/ Eye protection

a. Should be inspected for cleanliness and for signs of etching that might obscure vision.

4. Gloves, gowns, safety glasses, or face shields should not be left lying around on tables or equipment. Return them to their proper storage area.
Proper Gowning Procedures for PPE

1. Standard cleanroom garment
2. Put chemical gown on

3. Put on face shield.
 Don't touch face shield with chemical gloves.
4. Finish with chemical gloves.
 Note transfer bucket
Cleanroom Chemicals - General Safety Information

<table>
<thead>
<tr>
<th>Class</th>
<th>Acid</th>
<th>Base</th>
<th>Oxidizers</th>
<th>Solvents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major Hazard</td>
<td>Corrosive: pH <4</td>
<td>Corrosive: pH >9</td>
<td>Liberates Oxygen</td>
<td>Flammable, some are also toxic</td>
</tr>
<tr>
<td>Contact with skin/eyes</td>
<td>Chemical Burns</td>
<td></td>
<td></td>
<td>Irritation & possible absorption of toxic chemicals into body</td>
</tr>
<tr>
<td>Required PPE:</td>
<td>Safety Glasses or Goggles and Face Shield</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eyes/face</td>
<td>As a minimum, when using <100mL and no pouring or mixing will occur, nitrile gloves & safety glasses must be worn.</td>
<td>Safety Glasses or Goggles (No contacts)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body</td>
<td>Chemical Gown</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hands</td>
<td>Chemical-Resistant Gloves</td>
<td>Solvent-Resistant Gloves</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

First Aid Steps

1. Rinse for 15 minutes with water using eyewash, shower, or if appropriate faucet (spill on hand or wrist); another user in room should contact CSSER staff member. Serious or life threatening situations require calling 911 or ASU DPS immediately.

2. For HF contact, soak the affected area or apply compresses saturated in Zephiran solution. Refer to treatment of HF exposure for additional steps.

3. If any sensation (burning, itching) is noticed in affected area or if any chemical is splashed into eyes, go to Student Health or Tempe St. Lukes hospital.

Handling

Read label and MSDS. Carry in chemical buckets

Segregation

<table>
<thead>
<tr>
<th></th>
<th>Acid/HF Cabinet</th>
<th>Corrosive/Base Cabinet</th>
<th>Corrosive/Acid Cabinet</th>
<th>Flammable/Solvent Cabinet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keep separate from:</td>
<td>Keep separate from:</td>
<td>Keep separate from:</td>
<td>Keep separate from:</td>
<td></td>
</tr>
<tr>
<td>Solvents & Bases</td>
<td>Acids & Oxidizers</td>
<td>Bases</td>
<td>Acids</td>
<td></td>
</tr>
<tr>
<td>Maintain HF separately</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Use

- Always add acid to water
- Mixing acids may result in undesired reactions. Keep separate unless known to be compatible.
- If unknown odor is noticed, contact CSSER staff.
- Mixing solvents may result in undesired reactions. Keep separate unless known to be compatible.

Storage

- Acid/HF Cabinet
- Corrosive/Base Cabinet
- Corrosive/Acid Cabinet
- Flammable/Solvent Cabinet

Spill Response

See Spill Response Chart, page 37

Disposal

- No drain disposal of chemicals or waste.
- Refer to Waste Disposal Procedures, Section VI
Acids
Examples: Hydrofluoric, Nitric, Hydrochloric
Major Hazard: Corrosive. Will cause chemical burns to skin and eyes.

Characteristics:
1. Corrosive with a pH less than 4.
2. Usually non-flammable.
3. Soluble in water.
4. Will produce heat (burn) on contact with the moisture in your skin or eyes.

PPE: The corrosive nature of acids can result in serious, permanent damage to skin and eyes if contact is not prevented or controlled by PPE:
1. Eyes: Face shield AND Safety glasses or goggles
2. Hands: Acid Resistant Gloves
3. Body: Chemical Gown

Handling/Use/Storage:
1. Acid Hoods are Hoods # 1, 2, & 4.
2. Read and understand the MSDS for the selected acid.
3. Check labels to ensure correct acid was selected. Do not use chemicals that are not properly labeled.
4. Acids must be transported in chemical buckets.
5. Acids and solvents do not mix. Keep them separate. Do not use acids in a solvent hood (Solvent Hood is # 5)
6. Keep Hydrofluoric, Sulfuric, and Nitric Acid separate from other acids and from each other. Use secondary containment whenever possible.
7. The corrosive characteristics of acids extend to their vapors. Open acids only in an acid hood (Hoods 1, 2, & 4) and do not place your head in the hood.
8. When handling acids, remember “A. A. A. Always Add Acid to Water”.
9. Never add water to acid.
10. Acids are to be stored only in the marked acid cabinet. Bottles returned to storage must be tightly capped, rinsed off and wiped down.

Spills: The best spill plan is to prevent spills from occurring. Use containment buckets and pour and mix carefully. Extra precaution is required in crowded conditions and when visibility and dexterity may be impaired by PPE.
1. Should a small acid spill occur (< 100 ml), use a clean room wipe wetted with DI to wipe the spill.
2. Spills over 100 ml and up to 1 liter may require staff or EHS assistance.
3. Evacuate the clean room and Contact CSSER staff or EHS (5-1823) for spills over 1 liter.

First Aid: Because acids are water soluble, immediately rinsing areas of skin or the eyes that have been contacted with an acid will reduce the severity of the damage.
1. Rinse area for 15 minutes.
2. Seek medical attention at Student Health or Tempe.
3. Complete incident report or detail incident to supervisor so they may complete incident report.

Waste: Pouring chemicals down a drain is a violation of federal law.
1. The person who uses the last remaining amount of chemical in a bottle must rinse the empty bottle three times, and then label the bottle “Rinsed 3X” with a permanent marker before discarding it.
2. Acid waste is to be collected in containers, placed in the pass-through.
Bases
Examples: Sodium Hydroxide, Ammonium Hydroxide, Some Developers
Major Hazard: Corrosive. Will cause chemical burns to skin and eyes.

Characteristics:
1. Corrosive with a pH greater than 9.
2. Usually non-combustible.
3. Will produce heat (burn) on contact with the moisture in your skin or eyes.

PPE: The corrosive nature of bases can result in serious, permanent damage to skin and eyes if contact is not prevented or controlled by PPE:
1. Eyes: Face shield AND Safety glasses or goggles
2. Hands: Chemical Resistant Gloves
3. Body: Chemical Gown
4. Small quantities: When using < 100 ml, and no pouring or mixing will occur. Nitrile gloves and safety glasses must be worn, as a minimum.

Handling/Use/Storage Procedures
1. Read and understand the MSDS of the base being used.
2. Check labels to ensure correct base was selected. Do not use chemicals that are not properly labeled.
3. Bases are to be transported using a chemical bucket.
4. Bases can react violently with acids and oxidizers. Keep them separate.
5. Base Bench/Hoods 6 & 7 AZ 400T may also be used at the polymer Hood #3
6. Bases are to be stored in the Corrosive/Base cabinet. Bottles returned to storage must be tightly capped, rinsed off and wiped down.

Spills: The best spill plan is to prevent spills from occurring. Use containment buckets and pour and mix carefully. Extra precaution is required in crowded conditions and when visibility and dexterity may be impaired by PPE.
1. Should a small base spill occur (< 100 ml), use a clean room wipe wetted with DI to wipe the spill.
2. Spills over 100 ml and up to 1 liter may require staff or EHS assistance.
3. Evacuate the clean room and Contact CSSER staff or EHS (5-1823) for spills over 1 liter.

First Aid: Immediately rinsing areas of skin or the eyes that have been contacted by a base will reduce the severity of the damage.
1. Rinse area with water for 15 minutes.
2. Seek medical attention at Student Health or Tempe.
3. Complete incident report or detail incident to supervisor so they may complete incident report.

Waste: Pouring chemicals down a drain is a violation of federal law.
1. The person who uses the last remaining amount of chemical in a bottle must rinse the empty bottle three times, and then label the bottle “Rinsed 3X” with a permanent marker before discarding it.
2. Base waste is to be properly labeled and stored in the appropriately labeled cabinet. If there is no specially labeled cabinet, base waste may be stored with solvent waste.
Oxidizers
Example: Hydrogen Peroxide
Major Hazard: By providing additional oxygen, will allow a fire to burn “hotter”

Characteristics:
This class of chemicals liberates oxygen or causes oxygen to be released from other materials.

PPE:
1. Eyes: Face shield AND Safety glasses or goggles
2. Hands: Chemical Resistant Gloves
3. Body: Chemical Gown

Handling/Use/Storage Procedures:
1. Read and understand the MSDS of the oxidizer being used.
2. Check labels to ensure correct oxidizer was selected. Do not use chemicals that are not properly labeled.
3. Oxidizers are to be transported using a chemical bucket.
4. Bases can react violently with oxidizers. Keep them separate.
5. Must be stored separately from all other chemicals, especially reducing agents such as zinc or alkali metals.
6. Keep away from any combustible materials (materials that can burn, such as papers or wood)

Spills: The best spill plan is to prevent spills from occurring. Use containment buckets and pour and mix carefully. Extra precaution is required in crowded conditions and when visibility and dexterity may be impaired by PPE.
1. Should a small oxidizer spill occur (< 100 ml), use a clean room wipe wetted with DI to wipe the spill.
2. Spills over 100 ml and up to 1 liter may require CSSER staff or EHS assistance.
3. Evacuate the clean room and Contact CSSER staff or EHS (5-1823) for spills over 1 liter.

First Aid:
1. If an oxidizer comes in contact with your skin or eyes, flush with water for 15 minutes.
2. Seek medical attention at Student Health or Tempe.
3. Complete incident report or detail incident to supervisor so they may complete incident report.

Waste: Pouring chemicals down a drain is a violation of federal law.
1. The person who uses the last remaining amount of chemical in a bottle must rinse the empty bottle three times, and then label the bottle “Rinsed 3X” with a permanent marker before discarding it.
2. Oxidizer waste is to be properly labeled and stored in the appropriately labeled cabinet. If there is no specially labeled cabinet, oxidizer waste may be stored with acid waste.
Solvents
Examples: Methyl Ethyl Ketone, Acetone, Some Developers, Some Resists
Major Hazards: Flammability and Toxicity

Characteristics:
1. Most solvents have flash points (temperature at which sufficient vapors can collect to ignite) of less than 140°F (Class 2 liquids), many less than 100°F (Class 1 liquids).
2. Some solvents are water soluble (methyl alcohol), some are not (petroleum based).

PPE: Human skin serves as a barrier to some toxins, but not to all. Some toxic solvents are absorbed through the skin into the body where damage to other organs can occur. PPE provides a barrier to these toxic solvents.
1. Eyes: Face shield AND Safety glasses or goggles
2. Hands: Solvent Resistant Gloves

Handling/Use/Storage Procedures
1. Use in solvent hood #5. Inhalation (breathing in) of solvent vapors allows the toxin to enter the body.
2. Read and understand the MSDS of the solvent being used.
3. Check labels to ensure correct solvent was selected. Do not use chemicals that are not properly labeled.
4. Solvents are to be transported using a chemical bucket.
5. Solvents can react violently with acids. Keep them separate. Do not use acids in solvent hoods.
6. Solvents can react violently with one another. Do not mix solvents unless you know they are compatible.
7. Store solvents in flammable/solvent cabinets.

Spills: The best spill plan is to prevent spills from occurring. Use containment buckets and pour and mix carefully. Extra precaution is required in crowded conditions and when visibility and dexterity may be impaired by PPE.
1. Should a small solvent spill occur (< 100 ml), use a dry room wipe to wipe the spill.
2. Spills over 100 ml and up to 1 liter may require CSSER staff or EHS assistance.
3. Evacuate the clean room and Contact CSSER staff or EHS (5-1823) for larger spills.
4. Contact CSSER staff or EHS for any unexplained smells or odors in the clean room or adjacent spaces.

First Aid: Immediately rinsing areas of skin or the eyes that have been contacted by a solvent will reduce the amount of solvent entering the body.
1. Rinse area for 15 minutes.
2. Seek medical attention at Student Health or Tempe.
3. Complete incident report or detail incident to supervisor so they may complete incident report.

Waste: Pouring chemicals down a drain is a violation of federal law.
1. Bottles/containers: The person who uses the last remaining amount of solvent in a bottle must dispose of the bottle in the dumpster behind ERC.
2. Solvents: Waste solvents are to be collected in the containers stored by the solvent hood. This is to the right of hood #5. These wastes are disposed of as CSSER common waste, so individual waste tags do not need to be made up. Empty Solvent bottles are also to be tagged with a waste tag, and disposed of with waste chemicals.
Compressed Gas
Examples: Nitrogen, Argon, Helium
Major Hazards:
Chemical: Asphyxiation, due to the gas displacing available oxygen AND the characteristic posed by the specific gas (some are toxic, some are corrosive, some are flammable, etc.)
Physical: Inadvertent, accidental release of pressure (from rupture or valve damage) can be devastating.
Temperature: Released gas will be much colder than in the compressed state. Care should be taken to avoid bodily harm from freezing temperatures.

Characteristics:
1. Cylinders of compressed gas come in a range of sizes.
2. Regulators are specific to the gases.
3. Cylinders are leased or rented; gases are refilled by the vendor as needed.

PPE: Requirements vary based upon chemical species and the state of the compressed gas. Refer to the MSDS for the specific gas species for appropriate PPE.

Handling/Use/Storage Procedures
1. Purchase smallest quantity suited for your needs.
2. Store in exhausted, ventilated cabinets.
3. Monitor airborne levels of toxic and flammable gases.
4. Due to the potential for devastating damage from sudden pressure release, all cylinders must be secured, whether stored, in use or in transport.
5. Transporting cylinders requires the use of a cart. Rolling cylinders is extremely dangerous.

Spills: Cylinders do not spill, they leak or release their pressurized gas.
1. CSSER has in place a Toxic/Hazardous Gas Monitoring System (MST Life Safety System). If a toxic or hazardous gas is released, even at very low detection limits, the system will go into alarm mode. The ERC building fire alarm and Life Safety System will alarm both visually and audibly.
2. When these alarms are activated, all building occupants MUST exit the building.
3. If you have any concerns about the condition of a gas cylinder or its regulator, contact CSSER staff prior to use.

First Aid: Never enter an area or room where someone has been injured due to unknown vapor or gas concentrations.
1. Pull the fire alarm and be available to answer questions concerning the victim’s location when DPS arrives.

Waste: Disposal of empty cylinders in a dumpster is violation of federal law.
1. Empty cylinders are returned to the vendor for refilling or proper disposal.
A. Piranha Handling and Disposal Procedures

Piranha Handling

Note: Rules are shown in BOLD Procedures & FYI's are italicized

1. Put on the appropriate personal protective equipment prior to handling any chemicals. For Piranha, this includes chemical gown, chemical-resistant gloves, safety glasses and face shield.

2. Piranha and its component chemicals are to be handled in an acid hood only.

3. Piranha ingredients are concentrated sulfuric acid and hydrogen peroxide 30%, in various ratios. Calculate beforehand how much of each reagent you will need, then measure the acid and peroxide separately.

4. Mixing procedure: pour the sulfuric acid into your glass container and then slowly add the hydrogen peroxide. Use a glass rod to stir the mixture. Sulfuric acid is heavier than hydrogen peroxide and will tend to go to the bottom of the container and stay there unless stirred carefully. Mixing the sulfuric and the peroxide will cause the mixture to exceed 100°C.

5. Place stirring rods and any other apparatus into a beaker of water when finished with them.

6. This solution is very aggressive when it is hot. Carefully place your samples in the piranha. Remove your samples carefully. Rinse them thoroughly in DI water to remove acid from the surfaces, and then dry your samples with N2 gas.

Piranha Disposal

1. Allow the piranha to cool to room temperature prior to placing the waste in an approved waste container. Attach a properly completed EHS Hazardous Waste Tag to the container. The waste container should also not be capped until H2 is no longer being evolved. It can take 12-24 hours for the H2 to stop evolving. The waster container should be left in the back of the acid bench until the reaction is complete.

 If the piranha is not at room temperature when placed in a waste container and the cap is tightened, the piranha will cause the waste container to expand and probably rupture. The ruptured container will allow the acid to spray out of the rupture, potentially injuring anyone in the vicinity. **You could be the person injured!**

2. When the mixture is finished reacting, cap the waste container and move it to the pass through. Immediately upon leaving the cleanroom, go to ERC146A, remove the waste container and place it in the appropriate waste storage cabinet for pick-up by ASU EHS. (Refer to Section VI, “Chemical Waste Handling and Disposal.”)

3. If you get piranha on you, rinse the affected area immediately; then remove contaminated clothing. Do not hesitate to use the nearest safety shower.

4. Notify the CSSER staff of the incident so they can assist you in obtaining the proper medical treatment.
B. Treatment of HF Exposure – *Know this before you need it!*

There are a lot of horror stories about HF. Take them seriously.

1. Concentrated HF is considered “extremely” toxic (4, on the health hazard scale of 0-4). However, any solution containing a source of free fluorine ions is also hazardous. A plain, concentrated ammonium fluoride solution is considered “very” toxic (3, on the health hazard scale), yet becomes “extremely” toxic when made more acidic, such as in the BOE mixtures we use at CSSER. So even though 20:1 BOE (a mixture of HF and NH4F) has much less HF (about 7% of volume) than 49% HF it also has about 38% NH4F and is acidic. It therefore presents the same toxic hazards as 49% HF.

2. On contact, HF easily passes through skin and tissue. Because its action can be delayed for many hours, it can distribute throughout the body.

3. Negatively charged fluorine ions bind very easily to positively charged calcium and magnesium ions to form insoluble salts (CaF2 and MgF2 salts form some natural gemstones.) In the body, Ca and Mg ions are used to mediate a variety of physiological processes, such as muscle movement. Calcium is also a chief component in bone.

 - Local tissue damage results from free hydrogen ions which causes corrosive chemical burns and free fluorine ions which cause deep tissue damage including erosion of bone.
 - Systemic damage can occur when fluorine becomes distributed throughout the body. These conditions include hypocalcemia (loss of calcium) and hyperkalemia (too much potassium). Since calcium and potassium regulate the heart, irregular beating and cardiac arrest are manifestations. “Deaths have been *reported* from concentrated acid burns to as little as 2.5% BSA [body surface area exposed to skin contact].”

4. Calcium Gluconate is used as an antidote. This provides extra calcium ions which can scavenge free fluorine ions before they penetrate and damage tissue. In cases of skin contact, calcium Gluconate gel must be applied immediately to the area of contact. In cases where systemic damage is a risk, Calcium Gluconate is administered by a healthcare professional in an IV.

5. Pure hydrogen fluoride is an extremely toxic gas which very easily dissolves in water. "Hydrofluoric acid" describes this solution form. HF easily passes between gas and liquid phases; HF- will emit toxic fumes. Although CSSER lab safety precautions tend to emphasize protection against skin contact with fluoride-containing solutions, remember to avoid inhalation of the fumes by always working under fully exhausted areas of the wet benches.

6. Concentrated HF solutions are used in many household items, such as rust removers.

There is a general first aid kit available in the Cleanroom garment cabinet. The treatment procedure for hydrofluoric acid (HF) exposure is *very different* from that for mineral acid exposure.

If you think you have contacted HF in any way, follow these guidelines:

In any case, flush the affected area with water for 5 minutes. Remove any contaminated clothing. If you are assisting someone who is injured, make sure you are using personal protective equipment to avoid getting injured yourself! For HF burns, Zephiran® Solution is located in the refrigerator in the Cleanroom and Calcium Gluconate or Calcium Glutamate gel is located in the garment cabinet in the gowning room.

If there is *immediate* and *severe* pain, burning, or tissue destruction: **CALL 911 IMMEDIATELY!** Soak the affected area in Zephiran Solution (benzalkonium chloride solution), or apply compresses saturated with Zephiran Solution while waiting for the Paramedics to arrive. Notify CSSER staff. File Incident Report.
If there is **immediate, mild** burning, itching, or pain: Initiate soaking of the affected area in Zephiran Solution or apply compresses saturated with Zephiran Solution. Go to Student Health for continuation of treatment and medical evaluation—take Zephiran Solution and/or Calcium Gluconate or Calcium Glutamate gel with you. If after hours, go to Tempe-St. Luke’s for continuation of treatment. Continue treatment until the burning stops plus an additional 2 hours. Notify CSSER staff. File Incident Report.

If there is **Absolutely no evident effect**: Soak in Zephiran Solution or apply compresses saturated with Zephiran Solution for 30 minutes as a precautionary measure. Take home a bottle of Zephiran Solution and/or a tube of Calcium Gluconate or Calcium Glutamate just in case burning starts later on (HF can have delayed effects). Notify CSSER staff. File Incident Report.

If there is **delayed** burning, itching, pain, or redness: Initiate soaking the affected area in Zephiran Solution or apply compresses saturated with Zephiran Solution until burning stops. **Never** take any pain medicine for an HF burn! Go to the nearest hospital for treatment, and Tell them you have an HF burn. Notify CSSER Staff As soon as practical and possible. File Incident Report.

1. **Never** take pain medication for HF burns. Decreased pain is the best indication that treatment is effective.

2. **Do Not** use Zephiran® Solution in the eyes.

3. For areas that cannot be immersed, apply compresses saturated with Zephiran Solution.

4. In all CASES, notify the CSSER staff at (480) 965-3708 and file an Incident Report, found at http://engineering.asu.edu/safety under “Incident Report.”

5. If you are assisting a person with potential HF burns, **ALWAYS** don full PPE before assisting the other student.

In addition to the Cleanroom: There is also calcium glutamate (or gluconate) gel and 8 oz. bottles of Zephiran in a plastic container on top of the spill kit cabinets in the following laboratories that we have recorded use of HF: ERC138; ERC 146 and ERC146A.

The reporting of a chemical burn or getting a chemical burn, in and of itself will not cause you to get a strike, while **failure to do so probably will**.

Please also refer to the HF treatment flow chart for additional information.
Hydrofluoric Acid (HF) Exposure Response
Know these immediate actions BEFORE the incident.
If you think you have been exposed to HF:
IMMEDIATELY – Flush the area with water for five minutes!

Immediate or Severe
- Severe PAIN, BURNING, TISSUE DESTRUCTION?
 - DIAL 911
 - Soak in Zephiran Solution while waiting for Paramedics.

Mild or Slight
- Immediate MILD burning or itching?
 - Soak in Zephiran solution UNTIL BURNING STOPS (at least TWO HOURS).
 - Go to Campus Health or to Tempe St. Luke’s Hospital if after hours. Take the Zephiran or gel with you.

Delayed Pain or Burning
- Delayed PAIN, REDNESS, BURNING, or IRRITATION?
 - Soak in Zephiran or apply Calcium Gluconate/Gluconate until burning stops.
 - Go to Campus Health or to Tempe St. Luke’s Hospital if after hours. Take the Zephiran or gel with you.

NONE
- ABSOLUTELY NO EVIDENT EFFECTS?
 - Soak in Zephiran Solution for 30 minutes as a precautionary measure.
 - Take home a tube of Calcium Gluconate/Gluconate just in case.

REMEMBER
- DO NOT use Zephiran in the EYES!
 - Use compresses soaked in Zephiran for areas that cannot be irrigated.
 - IN ALL CASES, NOTIFY CSSER STAFF IMMEDIATELY by calling (480) 965-3708. Always file an Incident Report!
 - Incident Report forms are available online: http://engineering.asu.edu/safety/
C. Liquid Nitrogen Hazards and Handling

Note: Rules are shown in BOLD Procedures & FYI’s are italicized

For cryogenic liquid safety information, please refer to Air Products Safetygrams:

#16: Safe Handling of Cryogenic Liquids
#17: Dangers of oxygen Deficient Atmospheres
#27: Cryogenic Liquid Containers

Liquid Nitrogen Handling at CSSER

Protective Equipment

When handling liquid nitrogen at CSSER, the following protective equipment is required:

- Cryogenic gloves
- Long pants without cuffs
- Close toed shoes
- Safety glasses

In addition, when filling a dewar from the main tank, additional safety equipment may be needed consisting of:

- Face shield
- Ear protection (not needed when filling an atmospheric pressure dewar)

FILL SCHEDULING

It is not normally necessary to schedule a time to fill dewars in advance. However, fills from the main tank need to be started Monday through Friday between the hours of 8:00-11:15 or 1:00-4:15.

Dewar Fill Procedures

1. Contact CSSER staff to arrange a dewar fill. It is necessary to have two people present at all times during a fill. If you do not have a partner, CSSER staff will remain with you for the entire fill.

2. Complete the LN2 fill logbook in ERC 144. An account number must be provided for billing purposes every time!

3. Collect all equipment needed for the fill, including protective equipment, any needed connectors, and if needed, the diffuser attachment.

4. Take the dewar to the LN2 tank, and have CSSER staff open the gate.

5. Put on all needed safety equipment.

6. Do not ever touch LN2 or allow it to come into contact with your skin or clothing.

7. For non-pressurized dewar systems:
 a. Attach the diffuser to the tank supply line
 b. Insert the diffuser into the dewar
 c. Make sure the supply line vent valve is closed
 d. Slowly begin opening the supply line fill valve. Make sure there is no liquid N2 coming out of the top of the dewar.
 e. Continue adjusting the supply valve until the dewar is full. It may be necessary to change the position of the diffuser in the dewar to complete the fill. Close the supply line fill valve completely.
 f. Remove the diffuser from the dewar and disconnect it from the supply line. Return the line to its holder.
8. For pressurized dewar systems:
 a. Attach the supply line to the fill connection of the dewar. **DO NOT CROSS THREAD THE SUPPLY LINE FITTING!** It is the user’s responsibility to ensure that their dewar has the correct connection to the CSSER supply line.
 b. Put on all necessary safety equipment, including face shield and ear protection.
 c. Open the vent valve on the dewar.
 d. Open the fill valve on the dewar.
 e. Ensure that the vent valve on the supply line is closed.
 f. Open the fill valve on the supply line.
 g. The dewar will blow nitrogen out of the vent valve for the entire fill. At first, it will be warm since the fill line and dewar are warm. It will then get very cold.
 h. The dewar may also release nitrogen from the overpressure valve during the fill. This is normal.
 i. If the dewar is equipped with an accurate level measurement gauge, you can use that to determine when the dewar is full. Alternatively, the dewar is full when the nitrogen coming out of the vent line is partly liquid.
 j. Once the fill is complete, turn off the supply line fill valve.
 k. Turn off the dewar fill valve.
 l. Turn off the dewar vent valve.
 m. Open the supply line vent valve to release all of the LN2 from the fill line.
 n. Disconnect the supply line and return it to its holder.

9. CSSER staff will lock the gate after you remove the dewar.
Section V. Chemical Sign-Out Procedures

Right to Know: Some components in photo resists and other compound chemicals may cause health problems in unborn children. If you are contemplating having children, **read the MSDS thoroughly** for the chemicals you will be using and **understand the effects** these chemicals may have on you and/or your unborn child.
For more information, contact John Crozier at (480) 965-8498.

Chemical Sign-Out Procedure:

At its December 2001 meeting, the CSSER Executive Council decided to leave the current chemical sign out procedure in place until Spring 2002, at which point the situation was reassessed and upheld. Overnight and weekend chemical sign-out will be possible, under special circumstances (see below) and the chemicals must be signed back in at the start of the next business day.

This is to clarify the chemical sign out procedure, some definitions and our expectations of cleanroom users:

The chemicals are to be signed out by a CSSER staff member to the user (student, post doc, etc.). The individual uses the chemicals, returns the unused portion to the storage area after signing the chemicals in with a CSSER staff member by five o’clock PM the same day. **Saying a staff member was not available to sign the chemicals in is NOT an acceptable excuse for not returning the chemicals.**

The user must PLAN for the waste chemicals. The user is to attach a properly completed Hazardous Waste tag to the waste chemical container. The waste is to be placed in the pass thru before leaving the cleanroom. Upon leaving the cleanroom, immediately go to the waste chemical storage area, remove the waste chemicals from the pass thru and place them in the appropriate waste storage cabinet. All chemicals handling guidelines are to be followed.

Working after normal business hours (which are 8:00 AM-5:00 PM) is possible by planning your work. If chemicals are needed to work beyond 5:00 PM, obtain the chemicals from a CSSER staff member with sufficient time to return the chemicals before 5:00 PM. You can pour the chemicals into beakers you will be using, cover the beakers with a watch glass cover, and place a note by the beakers as to the contents, your name, phone, etc. Exit the cleanroom and sign the chemicals in to a CSSER staff member. You can then return to the cleanroom to complete your work after hours.

Working on evenings, weekends or holidays is possible if you present a proposal concerning the work to CSSER staff members with sufficient time to review it. The proposed work can be discussed with you and plans can be made for you to pursue your proposal for the weekend or holiday. **The important part is communicating to CSSER staff what you wish to do.**

6/24/08 Addendum: Clarification of Chemical Sign-out After Hours:

1. Students must notify staff at time of sign-out that they want to have the chemicals overnight or weekend. CSSER Staff will make a note in the chemical sign-in/out log of this request and initial for approval.

2. Chemicals are to be returned by 8:15 AM the next work day. If you have an extenuating circumstance such as: you have worked past midnight, family emergency, injury or illness, please contact ALL CSSER Staff immediately that you may not be in at 8:00 AM to return your chemicals and hazardous waste. Ask them to place the chemicals in the storage room, and tell them why you are asking them to do this for you or let them know when you will return to take care of it yourself. This shall be completed prior to leaving CSSER for the day. Failure to do so may result in a written warning.
3. Please plan ahead: All liquid chemicals must be procured and placed in the appropriately labeled pass-through in ERC146A by each student prior to entering the Cleanroom. After you are in the Cleanroom and determine you need more/other chemicals, you may contact a colleague (who must also have authorized access) to get the chemicals for you. Otherwise, degown and get them yourself. Unused chemicals are to be stored on the top shelf and waste chemicals are to be stored on the bottom shelf of the respective acid and solvent labeled sections of the pass-through.

4. Waste chemicals placed in the pass-through must have a properly completed Hazardous Waste tag.

Minimal temporary placement of chemicals is permitted in the pass-through provided it does not exceed the needs of daily usage. Some solvents & bases are stocked in the cleanroom by CSSER staff. Please notify CSSER staff if the supply is low.

Pass-through

NOTE: Top section is for solvents & bases. Bottom section is for oxidizers & acids. The top shelf of each section is for fresh chemicals, bottom shelf is for hazardous waste.

Definitions:
- Sign out/in requires the user and a staff member to sign in the logbook.
- “Normal business day” means 8:00 AM to 5:00 PM.
- “Same day” means the same day
- Start of business day means 8:00 AM.
- End of business or close of business means the end of a normal business day, typically 5:00 PM. It does not mean when you are done with your experiments or research.

The expectations we have are that all cleanroom users will become more safety conscious and follow the rules we have provided as guidance for you when working around or with chemicals. Those that do not follow the rules will lose access to the cleanroom.
Formation and Maintenance of Chemical Super Users' Group

INITIAL STUDENT GROUP
- Initially selected by the staff
- No strikes
- No warnings, etc. within past 9 months
- To consist of about 8 to 10 users, most from “Student Forum” group
- Heavy use/frequent use/highly experienced Cleanroom users

NEW MEMBERS
- May be nominated by self, other student or staff
- Must have 6 months in “top half” of Cleanroom usage hours
- No strikes
- No warnings, etc. within past 9 months
- Nominations may be made at the Monthly Student Forum
- At least 60% of current “Chemical Super User” students must vote
- Vote via e-mail to Geri Thiele mailto:geri.thiele@asu.edu
- Simple majority of voting “Chemical Super Users” must vote in favor

RULES
- Only check out chemicals for your own use or group – if working on the same project
- Use Log Book in ERC145C when checking out chemicals
- Must maintain clean record: no strikes, warnings, etc.
- Will be given ISAAC access to ERC145C
- Buddy system still applies
- If there is one chemical handling or waste incident within the “Super User” Group, the policy will be discontinued for a minimum of four months – for the entire Super User group.

Amended January 30, 2003
Revised February 13, 2003
Revised July 15, 2008
Section VI. Hazardous Waste Handling and Disposal

1. It is the responsibility of the individual to adhere and enforce ASU EHS policy with regards to hazardous waste handling and disposal. Accountability rests with the individual.

2. All hazardous waste that is generated during the course of an experiment must be collected by type (solvent, acid, HF, etc), with content and quantity recorded on tagged bottles and entered into the ASU EHS website at: http://cfo.asu.edu/ehs-environmentalaffairs. If this hazardous waste is generated in the Cleanroom then it must be placed in the appropriate waste cabinet in ERC146A at the conclusion of the experiment or at close-of-business, but not to exceed a 12-hour time period.

This responsibility embraces the regulatory “cradle to grave” concept. Accurate documentation is very important to facilitate disposal, i.e., avoids any additional cost to CSSER for the analysis of unknown chemicals, and protects EHS personnel from injury due to mislabeled chemicals. Users are requested to inform CSSER staff if the cabinet contents are out of compliance. Please maintain vigilance when placing chemicals in the waste cabinets (bottles may have ruptured, etc.).

Chemical waste storage area in ERC146A

There are three exhaust cabinets designated for hazardous waste in ERC146A. The hazardous waste category is marked on each cabinet door. Cabinets are dedicated and labeled for HF waste, mineral acid waste, flammable waste, and base waste. The shelving unit holds clean (rinsed) waste bottles.
3. CSSER and ASU EHS shall provide clean hazardous waste bottles for solvents, acids, bases and HF compounds.

 a. *Only mineral acid waste can be placed in the inorganic acid waste cabinet:* Examples of mineral acids are sulfuric, nitric, and hydrochloric acid.
 b. *HF compounds must be placed in the HF acid waste cabinet*
 c. *Solvent waste can be placed in the flammable waste cabinet on the shelf labeled solvent waste.*
 d. *Base or alkaline waste can be placed in the flammable waste cabinet on the shelf labeled base waste.*
 e. *Exotic waste (i.e. acid waste not compatible with either HF or general acid waste) or waste that contains any heavy metals should be disposed of as described in the submitted Preliminary Hazard Assessment (PHA).*

4. *Users generating hot or reactive hazardous waste may temporarily store the hazardous waste in the appropriate fume hood.* The hazardous waste container must have a properly completed EHS Hazardous Waste Tag attached. Ensure it is completely reacted before placing the hazardous waste bottle in the appropriate cabinet. When leaving hazardous waste chemicals to finish reacting, please fill out a note with the date, time you expect to return, NAME of CHEMICAL, your name and a contact phone number.

![Image of hazardous waste with tags and notes]

Hazardous Waste – EHS hazardous waste tag attached, note as to who left it with the cap off while gases are evolving.
5. Hazardous waste generators must ensure that the correct contents and concentrations of chemicals are listed on the hazardous waste tag. The contents must be written in words using the correct IUPAC name or chemical name, not trade names or formulas. Appendix B (pg 42) lists proper IUPAC names. This is a regulatory requirement for accountability and transportation. Please see the properly completed, sample EHS Hazardous Waste Tag below.

<table>
<thead>
<tr>
<th>Don’t use trade names or formulas</th>
<th>Do use IUPAC (correct)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_2O</td>
<td>Water</td>
</tr>
<tr>
<td>AZ 300 MIF Developer</td>
<td>Tetramethylammonium hydroxide</td>
</tr>
<tr>
<td>Piranha etch</td>
<td>Sulfuric acid & hydrogen peroxide</td>
</tr>
<tr>
<td>SU-8 Developer</td>
<td>1-Methoxy-2-propyl acetate</td>
</tr>
</tbody>
</table>
Properly Completed Hazardous Waste Tag

[Image of a hazardous waste tag with filled-in information]

- **Name of the individual(s) that generated the waste:** [Redacted]
- **Your department or group:** [Redacted]
- **Your office/lab phone:** [Redacted]
- **Date waste was first placed into the bottle:** [Redacted]
- **Room/lab is the location of waste generated:** [Redacted]
- **If waste is generated to a different lab:** [Redacted]
- **The pass-thru in the lab allows for the user to legally remove waste to 146A. This is the only exception. Waste generated in any other lab must remain there until Risk Management collects it.** [Redacted]

Solid/Liquid: Self-explanatory

<table>
<thead>
<tr>
<th>HAZARDOUS WASTE</th>
<th>amt</th>
<th>% of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfuric Acid</td>
<td>600ml</td>
<td>30%</td>
</tr>
<tr>
<td>Hydrogen Peroxide</td>
<td>100ml</td>
<td>10%</td>
</tr>
<tr>
<td>Water</td>
<td>200ml</td>
<td>10%</td>
</tr>
</tbody>
</table>

Additional information:

- The ratio of components in the waste.
- The total amount of waste placed in the container, in liters or milliliters.
- The proper "CHEMICAL NAME" box for all components of waste. Chemical formulas or trade names do not properly communicate the appropriate information as required by law. The majority of this information can be found in SECTION 1 and 11 of the Material Safety Data Sheet. In addition, some manufacturers place this information on the side of the bottle (i.e., OSHA). For off-site specification wastes, use the guidelines of the International Union of Pure and Applied Chemistry (IUPAC) for naming chemicals.

[35]
6. Only one person is allowed per sink at one time. You must clean up and properly dispose of all waste when work is complete.

Acid hood, waste bottles in the back. Note – one sink/one user!

7. There is to be no storage of raw or hazardous waste chemicals at any workbench except for those immediately needed for the experiment at hand (Please see #4 in this section). No excess equipment (glassware) will be left at workbenches after the conclusion of the experiment or close-of-business.

8. Waste chemical bottles are to be removed from the pass-through and placed in the appropriate waste cabinet at the end of an experiment. It is the individual (waste-generator’s) responsibility to properly complete the Hazardous Waste tag on the waste bottles and place the waste in the appropriate cabinet. Appropriate safety gear must be worn when disposing of chemicals in the waste cabinets.

9. Empty corrosive bottles (acid, base, oxidizer) are to be rinsed three times with water and marked with a permanent marker as ‘rinsed 3X’ by the person emptying the bottle. The first water rinse used should be 1/4 of the volume of the bottle, and must be collected as hazardous waste. Initial rinse waste from several bottles of the same chemical category may be poured into one hazardous waste bottle. The second and third water rinses must fill the bottle completely and may be poured down the drain. All bottle rinses are to be performed in the Cleanroom or other dedicated use laboratories in wet benches approved for the chemical type. It is the user’s responsibility to comply with these procedures.

10. Solvent bottles do not need to be rinsed, and must be placed in the pass through when empty.

11. For complex chemicals (e.g. Microstrip 2001), contact CSSER staff for proper empty bottle disposal procedures.

12. Any and all concerns about the compatibility of chemicals to be stored in waste cabinets should be addressed immediately with CSSER staff or ASU EHS (480-965-1823). Incompatible combinations of chemicals pose an unacceptable risk to the health and welfare of people within CSSER and the ASU community. Such a violation will be viewed as a criminal act.
Section VII. Chemical Spill Procedures

Note: Rules are shown in Bold Procedures and FYI’s are Italicized

1. **Small spills (50-100 ml)** may be cleaned up by user using a Cleanroom wipe wet with DI water. The wipe should then be disposed of in the appropriate waste container. Wipe the spill area a second time with a wet wipe to ensure all spilled chemical has been removed. Wipe the area with a clean dry wipe until the spill area is dry.

2. **Large spills (100-1000 ml)** “Notify CSSER staff for assistance”, may be neutralized using Neutracid, spill kit, or materials on spill cart. Spill carts are located in the Cleanroom and in ERC146A. The neutralized liquid can be cleaned up using the same procedure as for small spills (#1 above). CSSER staff is to be notified of cleanup materials used so they can be replenished.

3. **Major spills (greater than 1000ml)** must NOT be addressed by individuals. In the event of a major spill, evacuate the area and contact either CSSER staff or University EHS. The person involved with the spill must remain nearby until either a CSSER or EHS staff member arrives. The person involved with the spill is required to advise others from entering the affected area. If the situation presents an immediate threat to life and safety call 911.

4. An Incident Report (see Section III) must be filed with the Fulton School safety officer (and CSSER) for all chemical spills within 24 hours. The link to the form can be found at: http://engineering.asu.edu/safety.

 S.W.I.M.
 - Stop the spill
 - Warn others
 - Isolate the area
 - Make for the exit

5. CSSER staff may opt to handle a major spill. If so, they must use all appropriate safety gear while using the spill cart and/or Neutracid. The residual liquid must be contained and placed into suitable containers for pick-up by EHS. CSSER staff will be trained in the use of spill kits/carts. Students may also be trained (if desired) in the use of spill kits.

6. If CSSER staff determines the spill is beyond their abilities, ASU EHS is to be notified immediately (965-1823). CSSER staff will remain close to the spill to secure the hazardous area until EHS arrives.

7. If an Incident Report (see Section III) has been filed, CSSER will review the report along with the Fulton School safety officer and discuss the incident within 72 hours.
<table>
<thead>
<tr>
<th>Size</th>
<th>Small</th>
<th>Large</th>
<th>Major</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>< 100 ml</td>
<td>100 ml - 1,000 ml</td>
<td>> 1,000 ml</td>
</tr>
<tr>
<td>Clean-up Performed By:</td>
<td>User</td>
<td>User, with CSSER staff assistance</td>
<td>CSSER staff or EHS (5-1823), Life threatening spills require calling 911 immediately</td>
</tr>
<tr>
<td>Steps for User/Staff to Follow:</td>
<td>1) Wet cleanroom wipe with DI water.</td>
<td>1) Select clean-up material appropriate to chemical from Neutracid, spill carts or material on spill carts.</td>
<td>1) Evacuate area.</td>
</tr>
<tr>
<td></td>
<td>2) Wipe up spill.</td>
<td>2) Follow instructions on spill clean-up container.</td>
<td>2) Contact CSSER staff or EHS immediately. Remain in building, but outside nearby.</td>
</tr>
<tr>
<td></td>
<td>3) Repeat steps 1 and 2.</td>
<td>3) Wipe area where spill clean-up material was used with Cleanroom wipe wetted with DI water.</td>
<td>3) Provide information on spill to EHS and CSSER staff.</td>
</tr>
<tr>
<td></td>
<td>4) Wipe spill area with dry Cleanroom wipe.</td>
<td>4) Repeat step 3.</td>
<td>4) Keep others out of spill area.</td>
</tr>
<tr>
<td></td>
<td>5) Wipe spill area dry with Cleanroom wipe.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disposal of Spill Clean-up Materials</td>
<td>Place wipes in container, follow procedures for Hazardous Waste appropriate to spilled material.</td>
<td>Place spill response material and wipes in container, follow procedures for Hazardous Waste appropriate to spilled material.</td>
<td>EHS will manage</td>
</tr>
<tr>
<td>Incident Report</td>
<td>Required, also report use of spill clean-up materials.</td>
<td>Required</td>
<td>Required</td>
</tr>
</tbody>
</table>

Users unfamiliar with spill kits/carts should follow procedures for Major Spills.

Incident Report can be found at: http://engineering.asu.edu/safety
Section VIII. Safety FAQ's

Q1: If I order/bring a chemical into my lab (or cleanroom), what is the proper procedure I need to follow?

A1: Make sure to have a Material Safety Data Sheet for any new chemical. READ THE MSDS. Next, notify CSSER and bring the MSDS. You must complete a Preliminary Hazard Assessment (PHA) for new chemicals or process chemistries. Depending on the type and nature of the chemical you may want to contact the Fulton School Safety Officer about proper storage, use, and safety precautions.

Material Safety Data Sheets (MSDS) sheets need to be kept both in the lab as well as in the CSSER MSDS binder. Read the MSDS.

Q2: What is the proper way to separate (or segregate) different classes of chemicals?

A2: There should be at least 3 separate storage cabinets that are designed for the appropriate type of chemical:

- Oxidizers (i.e., peroxides, chlorine)
- Corrosives (i.e., acids, bases – need to be segregated from each other, too)
- Flammables (i.e., solvents, alcohols)

Q3: What if I have an 'exotic' chemical that doesn't fit into one of the above categories?

A3: Read the MSDS. If the chemical is hazardous, reactive, toxic, or carcinogenic in nature, it is necessary that you contact the Safety Officer to determine the appropriate safety protocol to follow. Bring the MSDS with you.

Q4: Where can I get waste bottles and hazardous waste tags?

A4: These can be picked up from lab stores and they are free! CSSER also has bottles, in the cleanroom support area.

Q5: How often should I have my chemical waste/bottles removed...every month...every 6 months?

A5: This depends on (i) how often you are generating waste and (ii) the harmful nature of the waste. As a general rule, if small amounts are generated infrequently, then get rid of the waste after each use. If you are generating waste on a very regular basis (i.e., day to day or week to week) you can wait until the waste container is filled. But never empty waste into a container that is unlabeled!

Q6: If I wear eyeglasses, do I also need to wear safety goggles?

A6: Yes!...as an alternative to goggles, a face shield can also be worn. One exception is to allow goggles to be momentarily removed when viewing samples through a microscope (in the cleanroom).

Q7: When is it necessary to wear an acid gown?

A7: Anytime that you are working with 'Corrosives' or Toxic materials! Another scenario may be if you are uncertain of the dangers of the chemical you are working with...and if that's the case...you should contact a CSSER staff member for the safety info and Read the MSDS!
Q8: What action do I take if I cause a chemical spill?

A8: This depends on the severity of the spill. Of course, if it is life threatening…call 911! Otherwise:
(1) Notify CSSER immediately, (2) Contact University EHS, (3) Notify the Fulton School Safety Officer,
(4) Fill out an incident report. Incident reports can be found on the web. There are no penalties
associated with filling out an incident report! The Incident Report Form may be found on the web at

Q9: Whom should I contact if I need some help in making sure my lab meets safety
regulations?

A9: You can contact the Fulton School Safety Officer, who is more than willing to come into your lab
and help you determine what corrective actions need to be taken.

For further information, please contact the Fulton School Safety Officer at Engineering Research and
Graduate Services, 480-965-8498, or by e-mail at jcrozier@asu.edu. Forms may be found at:
http://engineering.asu.edu/safety.

Thank you!
Appendix A: Glossary of Acronyms & Terms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOE</td>
<td>Buffered Oxide Etch: Typically, a 20:1 mixture hydrofluoric acid and ammonium fluoride</td>
</tr>
<tr>
<td>Buddy-1</td>
<td>Safety rule requiring 2 people to be present in Cleanroom after normal working hours</td>
</tr>
<tr>
<td>Buddy-2</td>
<td>Safety rule requiring you inform someone of your presence and activity in Center laboratories with chemicals after normal working hours</td>
</tr>
<tr>
<td>COB</td>
<td>Close of business: Typically defined as 5PM</td>
</tr>
<tr>
<td>Cryogenic</td>
<td>Of or relating to low temperatures</td>
</tr>
<tr>
<td>CSSER</td>
<td>Center For Solid State Electronics Research</td>
</tr>
<tr>
<td>EHS</td>
<td>Environmental Health and Safety</td>
</tr>
<tr>
<td>FAQ</td>
<td>Frequently Asked Questions</td>
</tr>
<tr>
<td>Fab or Cleanroom</td>
<td>Semiconductor processing facility located in ERC146B</td>
</tr>
<tr>
<td>HF</td>
<td>Hydrofluoric Acid</td>
</tr>
<tr>
<td>HMDS</td>
<td>Hexamethyldisilazane: used to improve adhesion of photoresist</td>
</tr>
<tr>
<td>IUPAC</td>
<td>International Union of Pure and Applied Chemistry</td>
</tr>
<tr>
<td>MSDS</td>
<td>Material Safety Data Sheet</td>
</tr>
<tr>
<td>NFPA</td>
<td>National Fire Protection Association</td>
</tr>
<tr>
<td>Normal Working Hours</td>
<td>Defined as 8AM – 5PM Monday thru Friday</td>
</tr>
<tr>
<td>Pass-through</td>
<td>The two sided cabinet that connects Cleanroom and Chemical Storage Room and allows for safe transfer of chemicals back and forth</td>
</tr>
<tr>
<td>PHA</td>
<td>Preliminary Hazard Analysis: a written procedure that ensures user understands the nature and hazards of chemicals used in their work</td>
</tr>
<tr>
<td>Piranha</td>
<td>A mixture of sulfuric acid and hydrogen peroxide used for wafer cleans</td>
</tr>
<tr>
<td>PPE</td>
<td>Personal Protection Equipment such as goggles, gloves, and aprons</td>
</tr>
<tr>
<td>“Right-To-Know”</td>
<td>A law requiring information is provided on possible chemical exposure</td>
</tr>
<tr>
<td>Safety (safety)</td>
<td>The state of being safe; freedom from the occurrence of risk of injury, danger, or loss; the action of keeping safe.</td>
</tr>
<tr>
<td>SESHA</td>
<td>Semiconductor Environmental Safety and Health Association</td>
</tr>
<tr>
<td>SMBWA</td>
<td>Safety Management By Walking Around</td>
</tr>
<tr>
<td>Zephiran</td>
<td>Benzalkonium chloride solution: a treatment for hydrofluoric acid burns</td>
</tr>
</tbody>
</table>
Appendix B: Common and Correct (IUPAC) Chemical Names

Acids

<table>
<thead>
<tr>
<th>Common/Colloquial Name</th>
<th>Correct (IUPAC) Technical Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chrome Etch</td>
<td>Ceric Ammonium Nitrate, Nitric Acid</td>
</tr>
<tr>
<td>Copper Etch APS-100</td>
<td>Ammonium Persulfate</td>
</tr>
<tr>
<td>Copper Etch</td>
<td>Ferric Chloride</td>
</tr>
<tr>
<td>Piranha Etch</td>
<td>Sulfuric Acid, Hydrogen Peroxide</td>
</tr>
<tr>
<td>Gold Etch (TFA & GE)</td>
<td>Potassium Iodide</td>
</tr>
<tr>
<td>Nitric</td>
<td>Nitric Acid</td>
</tr>
<tr>
<td>Sulfuric</td>
<td>Sulfuric Acid</td>
</tr>
<tr>
<td>Peroxide</td>
<td>Hydrogen Peroxide</td>
</tr>
<tr>
<td>BOE 20:1</td>
<td>Hydrofluoric Acid, Ammonium Fluoride</td>
</tr>
<tr>
<td>HF</td>
<td>Hydrofluoric Acid</td>
</tr>
</tbody>
</table>

Bases

<table>
<thead>
<tr>
<th>Common/Colloquial Name</th>
<th>Correct (IUPAC) Technical Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>353 Developer</td>
<td>Sodium Hydroxide</td>
</tr>
<tr>
<td>APEC Resist Developer w/ Surfactant</td>
<td>Tetramethylammonium Hydroxide</td>
</tr>
<tr>
<td>AZ 300 MIF Developer</td>
<td>Tetramethylammonium Hydroxide</td>
</tr>
<tr>
<td>AZ 400K Developer</td>
<td>Potassium Borates</td>
</tr>
<tr>
<td>AZ 527 Developer</td>
<td>Tetramethylammonium Hydroxide</td>
</tr>
<tr>
<td>OCG 934 Developer</td>
<td>Tetramethylammonium Hydroxide</td>
</tr>
<tr>
<td>Potassium Hydroxide (K O H)</td>
<td>Potassium Hydroxide</td>
</tr>
<tr>
<td>Ammonium Hydroxide</td>
<td>Ammonium Hydroxide</td>
</tr>
<tr>
<td>AZ 400T Stripper</td>
<td>1-Methyl-2-Pyrrolidinone, Tetramethylammonium Hydroxide, Propanediol</td>
</tr>
</tbody>
</table>

EBL Chemicals

<table>
<thead>
<tr>
<th>Common/Colloquial Name</th>
<th>Correct (IUPAC) Technical Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMMA</td>
<td>Polymethyl methacrylate</td>
</tr>
<tr>
<td>MIBK</td>
<td>Methyl Isobutyl Ketone</td>
</tr>
<tr>
<td>CS</td>
<td>2-Ethoxyethanol</td>
</tr>
<tr>
<td>MEK</td>
<td>Methyl Ethyl Ketone</td>
</tr>
<tr>
<td>Methanol</td>
<td>Methyl Alcohol</td>
</tr>
<tr>
<td>Ethanol</td>
<td>Ethanol</td>
</tr>
<tr>
<td>Isopropanol</td>
<td>Isopropanol</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>Chlorobenzene</td>
</tr>
<tr>
<td>Anisole</td>
<td>Anisole</td>
</tr>
<tr>
<td>ZDMAC</td>
<td>N,N-Dimethylacetamide</td>
</tr>
<tr>
<td>ZED-N50</td>
<td>n-Amyl Acetate</td>
</tr>
<tr>
<td>ZEP 520A-7</td>
<td>Anisole, Methyl Styrene/Chloromethyl Acrylate Copolymer</td>
</tr>
<tr>
<td>Solvents</td>
<td>Common/Colloquial Name</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Acetone</td>
<td></td>
</tr>
<tr>
<td>IPA</td>
<td></td>
</tr>
<tr>
<td>Methanol</td>
<td></td>
</tr>
<tr>
<td>T1100 Rinse Solvent</td>
<td></td>
</tr>
<tr>
<td>XP SU-8 Developer</td>
<td></td>
</tr>
<tr>
<td>QZ 3322 Polyimide Stripper</td>
<td></td>
</tr>
<tr>
<td>Nano Remover PG (NMP)</td>
<td></td>
</tr>
<tr>
<td>HMDS</td>
<td></td>
</tr>
<tr>
<td>AP 3000 Adhesion Promoter</td>
<td></td>
</tr>
<tr>
<td>DS 3000 Advanced Developer</td>
<td></td>
</tr>
<tr>
<td>QZ 3501 Polyimide Developer</td>
<td></td>
</tr>
<tr>
<td>Microstrip 2001 Photoresist Stripper</td>
<td></td>
</tr>
<tr>
<td>AZ 4620 Positive Photoresist</td>
<td></td>
</tr>
<tr>
<td>OCG 825 Positive Photoresist</td>
<td></td>
</tr>
<tr>
<td>AZ 5214 E Photoresist</td>
<td></td>
</tr>
<tr>
<td>AZ 1512 Positive Photoresist</td>
<td></td>
</tr>
<tr>
<td>AZ 3312 Positive Photoresist</td>
<td></td>
</tr>
<tr>
<td>AZ 1505 Positive Photoresist</td>
<td></td>
</tr>
<tr>
<td>AZ 4330 Positive Photoresist</td>
<td></td>
</tr>
<tr>
<td>PMMA Electron Beam Resist</td>
<td></td>
</tr>
<tr>
<td>SU-8 Series Resist</td>
<td></td>
</tr>
</tbody>
</table>
CLEANROOM SAFETY FEATURES & FLOOR PLAN

LEGEND
FE = FIRE EXTINGUISHER
SS = SAFETY SHOWER
Appendix D: Cleanroom Orientation

After completing this training, the student will be able to demonstrate proficiency in the following areas:

- How the ISAAC system works in the cleanroom (swipe in/out).
- How to gown and where to get gowning supplies.
- Familiarity with the back rooms where the chemicals are stored:
 - Where the empty waste bottles are kept and
 - Where the pass-through is and how it is used
- The process for signing out chemicals and where the logbook is located.
- How to gown in full acid gear. Understanding of when and how the acid gear needs to be used.
- Location of and how to use the hand and glove washer.
- Proper acid handling and use of the acid and solvent hoods.
- How to properly carry bottles of chemicals in the cleanroom.
- Emergency procedures for the cleanroom. (i.e. where the phone to DPS is located, where is the HF burn treatment kit, where the safety showers and eye washes are).
- Understanding that students are responsible for the cleanliness of the cleanroom and that all users are added to the cleanroom duties list.
- Where to find supplies and equipment around the cleanroom.
- Understanding of the Buddy System for after-hours usage and why it is important.
- Familiarity with the equipment signup sheets.
- Knowledge of the use and submission of the “Online Service Request” when tools are down.
Appendix E: Student Duties

Student #1
Responsibilities are vacuuming bays A & B (*Metal deposition and *Metrology Bays) and the **gowning room area** and then wet mopping the same areas weekly.

Student #2
Responsibilities are vacuuming bays C & D (*Plasma Etch and *Litho Bay-Aligner side) and then wet mopping the same areas weekly.

Student #3
Responsibilities are vacuuming bays E & F (*Litho Bay by chemical pass through and *Furnace Bay) and then wet mopping the same areas weekly.

Student #4
Responsibilities are vacuuming bays G & H (*Etcher and *CVD bays) and then wet mopping the same areas weekly.

Student #5
Responsibilities are cleaning up the Wet Benches weekly (including: rinsing/drying all decks, putting away all glassware, refilling all solvent squirt bottles and replacing any full bulk waste bottles and properly completing a hazardous waste tag of the contents). Also, document and report to CSSER staff any incorrectly labeled experiments, non-labeled experiments or hazardous waste left beyond 24hr limit.

Student #6
Responsibilities are trash disposal from the cleanroom and the gowning room **twice weekly**, Monday and Thursday. This includes all the trash containers in the clean room as well as the large trash bin in the gowning room.

Student #7
Responsibilities are to complete chemical inventory and empty all trash containers in ERC138 weekly. Notify CSSER staff if a hazardous waste pick-up is needed. Also, empty all trash containers in ERC 146A (**Hazardous Waste Storage Room**) **twice weekly**, Monday and Thursday.

Please refer to cleanroom floor plan (page 44) for bay locations.

Note: All trash is to be disposed of in the dumpster located behind the ERC building.
Appendix F: Sample PHA Form

Instructions: Please fill in this form completely, attach Material Safety Data Sheets (MSDS) for each chemical you list, and send with the completed form to: Safety Officer, Engineering Research Services, GWC208D, Mail Code 9309. Your faculty advisor’s signature is required on the approved copy.

Section 1. General Information

<table>
<thead>
<tr>
<th>Date Submitted:</th>
<th>Approved Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Your Name</td>
<td>Your phone</td>
</tr>
<tr>
<td>Faculty Advisor</td>
<td>Advisor’s phone</td>
</tr>
<tr>
<td>Department</td>
<td></td>
</tr>
<tr>
<td>Where will work be done?</td>
<td><< Phone in this lab</td>
</tr>
<tr>
<td>Co-experimenter name</td>
<td>Co-experimenter phone</td>
</tr>
</tbody>
</table>

Section 2. Process Description. Please describe your planned process in detail, including experimental procedure and steps; solvents, temperature, pressure, etc. For each chemical used, please give trade name, full IUPAC name and quantity (per experiment), as well as any expected by-products. List any special conditions or hazards. Multiple chemicals may be listed on this form; however, each different process should be listed on its own form.

Section 3. Chemical Need and Alternatives. Please describe why it is necessary that this specific chemical be used. List at least three other, less toxic, chemicals and/or operational alternatives that were investigated and why they could not be implemented.

Section 4. Chemical Listing. Please list all chemicals (trade name and IUPAC name or components) to be used in your process (see MSDS section 2 for components and complete IUPAC names). If NFPA Hazard Codes are given on the MSDS, please list them:

<table>
<thead>
<tr>
<th>#</th>
<th>Chemical Name (IUPAC)</th>
<th>Qty.</th>
<th>MSDS</th>
<th>NFPA Hazard Code</th>
<th>CAS Number:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Section 5. Stability. Please describe any Chemical Reactivity, Incompatibilities, and Decomposition Products (see MSDS sections 5 and 10):
- Chemical Reactivity:
- Incompatibilities:
- Decomposition Products:

Section 6. Health Effects. Please explain any hazards or effects of this chemical/material on the human body (see MSDS sections 3 and 11):

Section 7. PPE. Please check any necessary Personal Protective Equipment (see MSDS section 8):
- Goggles/Safety Glasses
- Apron
- Face Shield
- Gloves
- Respirator
- Fume Hood
- Other (Please describe)

Section 8. Waste Disposal. Please provide details about how waste will be handled, labeled, in which cabinet it will be stored, etc. Attach a completed waste tag for this chemical specific to your planned activity.

Signature of Experimenter: __________________________ Date: __________

Signature of Faculty Advisor: ______________________ Date: __________

Approval Signature of Authorized CSSER Staff: ______________ Date: __________

Approval Signature of Safety Officer: ______________ Date: __________
Appendix G: Safety Photographs

Chemical storage room

Chemical pass-through
Chemical transport carts Buckets for transporting chemicals

Emergency Safety Equipment

Spill kit, fire extinguisher and spill cart inside cleanroom
Solvent Hood

Note – Bulk waste to right of solvent hood

Automated Glove Wash

Use after acid processing
Chemical storage and eye wash

Glass waste
CSSER Policies and Procedures Handbook Record of Changes

<table>
<thead>
<tr>
<th>Rev</th>
<th>Date</th>
<th>Changed By</th>
<th>Sections Modified</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>8/29/08</td>
<td>Team</td>
<td>Initial release of new format. All sections modified.</td>
</tr>
<tr>
<td>B</td>
<td>9/21/09</td>
<td>TCE</td>
<td>Fix various broken web links; modify Piranha mixing procedure</td>
</tr>
<tr>
<td>B.1</td>
<td>9/21/09</td>
<td>CLS</td>
<td>Student Duties updated</td>
</tr>
<tr>
<td>C</td>
<td>10/06/10</td>
<td>CLS</td>
<td>Update EHS web links; modify Section VI</td>
</tr>
</tbody>
</table>